Visualization of Energy Consumption Using Cloud-based Computing and it's Applications

- Implementations in Green University of Tokyo Project -

CiMX Corporation CEO Takahide Nakajima

Agenda

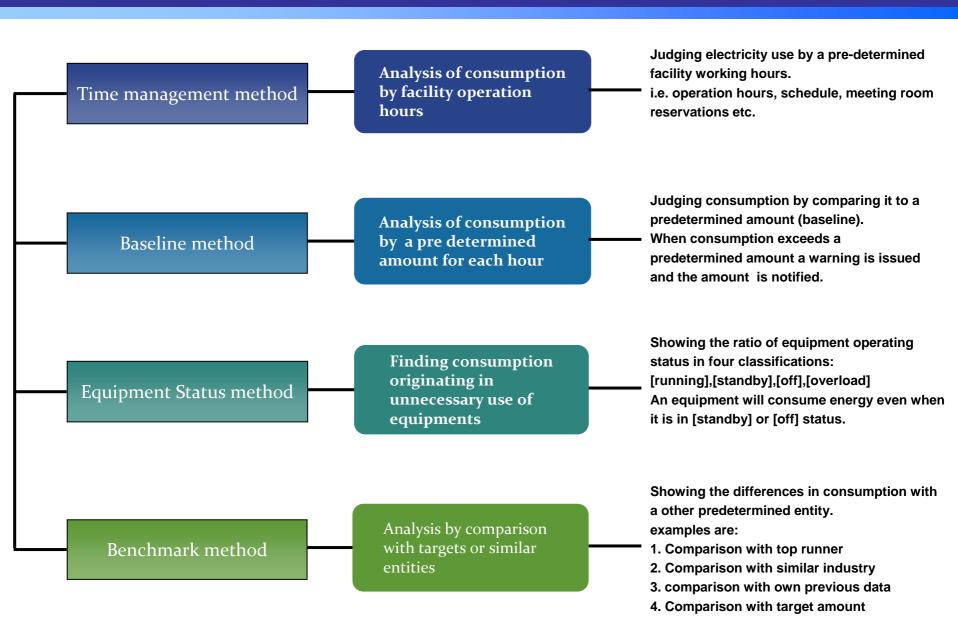
Background issues and solutions

- Developing a common understanding concerning the definition of wasted energy consumption.
- Visualization method of wasted energy
- Applying the method of defining wasted energy in a university facility

Importance of GUI

- Ease of use
- Enables continuous use
- System configuration
- Demonstration (movie clip)

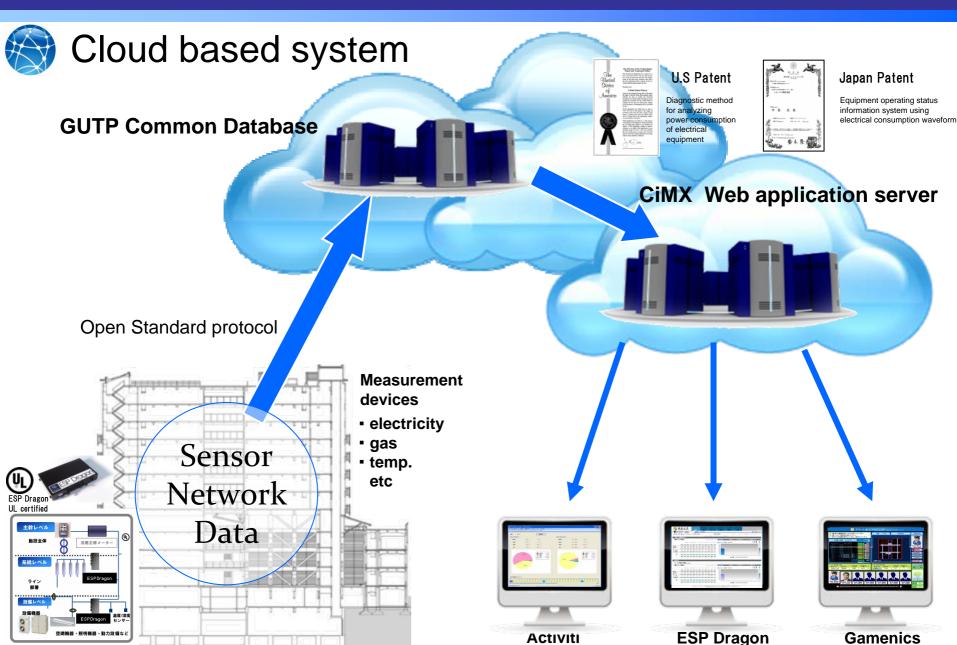
Background issues and solutions


Initial Issues

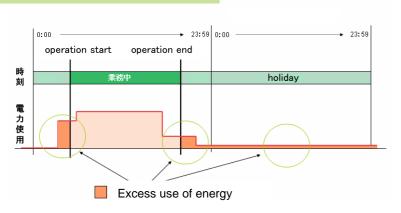
- Unable to see energy consumption
- Unable to judge proper consumption
- Unable to deploy conservation measures

Solutions

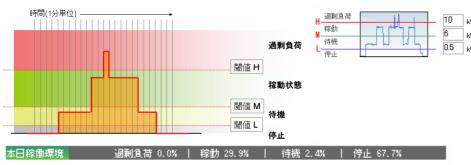
- Visualizing energy consumption and wasted energy in real time.
- Visualizing the method of determining wasted energy


Four methods of defining wasted energy consumption

Implementation to a University


Location	Method used in finding wasted energy		
Professor office, Faculty rooms	Determined by operation hours Time management method		
Class rooms	Determined by schedule Time management method		
Seminar ,Lecture and meeting rooms	Determined by schedule Time management method		
Server room, Research rooms A	Comparison to similar environment Bench mark method		
Research room B	Determined by usage Operation status method		

System configuration

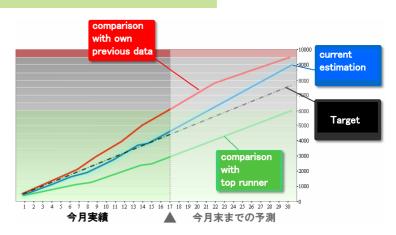

Various analysis functions

Time management

Analysis of consumption by facility operation hours


Equipment status

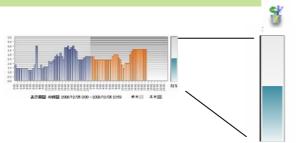
Summarizes the operation status of each equipment in following 4 statuses [overload] , [running], [standby], [off]


Finding consumption originating in unintended use of equipments

Analysis of consumption by a predetermined amount for each hour

Benchmark

Comparison with top runner, similar industry, own previous data, or target


Various visualization elements

Trends

48 hour graphs for easy trend comparison. Percentages and monthly summary display.

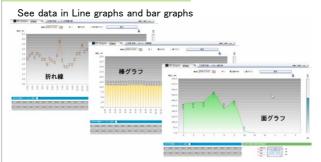
Estimated Excess Usage

Esitmated Excess Usage ratio

45%

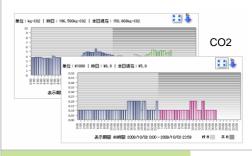
Ranking

Graphs shown in consumed amount ranking



Time span

see data in Day, month, year time spans



Graphs

Categories

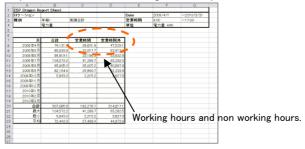
View data in Kw Co2 Kg-CO2 and electric bills

Electric bill

1位

2位

3位


Printing

Function for printing screen image.

XML reporting

Report download function which generates report in xml format.

Multi-Language

Switch English and Japanese mode in one click. Downloadable repots are also multi-language.

Rank by: EPC(kWh) CO2(kg-CO2) Cost(¥)									
⊟ट=8∉ All Facilities Total					ESP Dragon Report Sheet.				
Past 12 Months					Location		ALL		
					Report type		Monthly report:	By total	
EPC,E							Electric Power Consumption		
	Nov	Dec	Jan	Feb					
EPC(kWh)	72312	79265	81487	7288					
Cost	1157	1268	1304	1166		Date		To	
C02	25818	28303	29098	2602		Date		10	
Peak Power	51	90	59	56	20	09/10/01	Thu.		
EEE (kWh)	46298	50542	50383	4566	20	09/10/02	Fri.		
*			Jan		20	09/10/03	Sat.		
	Nov	Nov Dec		Feb	20	09/10/04	Sun.		

Next generation GUI

Gamenics

Gamenics is a method of designing software with intuitive, easy to understand, efficiently designed user interfaces, for a better user experience used in the gaming industry.

Intuitive and fun to use interfaces

Gamenics applied products

- Nintendo "DS" and "Wii"
- Car navigation systems
- Home appliances

Used in many products

Core elements

Intuitive application GUI design

Intuitive interface, manual free operation

Story design / plot

Pre- designed story for achieving target

Self motivating learning curve

Multiple stages of Learning mechanism

Advantages of Gamenics

Gain interest and enthusiasm before setting target

Story branching according to user level

Interpretation of joy upon achieving targets

Gamenics for achieving target

Green University of Tokyo Project Demo software

Facility diagram / layout screen

Energy Administrator assigned for each section of floor

Room diagram and consumption for eacharget setting screen

Eco point screen

Self motivating

and persistent

Participation

Demonstration

Operation demonstration of Web and FLASH interface

